
Indirect Proofs



Outline for Today
What is an Implication?

• Understanding a key type of mathematical 
statement.

Negations and their Applications

• How do you show something is not true?

Proof by Contrapositive

• What's a contrapositive?

• And some applications!

Proof by Contradiction

• The basic method.

• And some applications!



Logical Implication



Implications

An implication is a statement of the form

If P is true, then Q is true.

Some examples:

• If n is an even integer, then n2 is an even 
integer.

• If A ⊆ B and B ⊆ A, then A = B.

• If you like the way you look that much, 
(ohhh baby) then you should go and love 
yourself.



Implications

An implication is a statement of the form

If P is true, then Q is true.

In the above implication, the statement “P
is true” is called the antecedent and the 
statement “Q is true” is called the 
consequent.



What Implications Mean

Consider the simple statement

If I put fire near cotton, it will burn.

Some questions to consider:

• Does this apply to all fire and all cotton, or just 
some types of fire and some types of cotton? 
(Scope)

• Does the fire cause the cotton to burn, or does 
the cotton burn for another reason? (Causality)

• These are significantly deeper questions than 
they might seem.

• To mathematically study implications, we need to 
formalize what implications really mean.



Understanding Implications

“If there's a rainbow in the sky,
then it's raining somewhere.”

• In mathematics, implication is directional.

• The above statement doesn't mean that if it's raining 
somewhere, there has to be a rainbow.

• In mathematics, implications only say something 
about the consequent when the antecedent is true.

• If there's no rainbow, it doesn't mean there's no rain.

• In mathematics, implication says nothing about 
causality.

• Rainbows do not cause rain. ☺



What Implications Mean

In mathematics, a statement of the form

For any x, if P(x) is true, then Q(x) is true

means that any time you find an object x
where P(x) is true, you will see that Q(x) is 
also true (for that same x).

There is no discussion of causation here. It 
simply means that if you find that P(x) is true, 
you'll find that Q(x) is also true.



Implication, Diagrammatically

Set of objects x where
Q(x) is true.

Set of objects x where
P(x) is true.

Any time P is true, 
Q is true as well.

If P isn't true, Q may 
or may not be true.



Negations



Negations

A proposition is a statement that is either true or false.

Some examples:

• If n is an even integer, then n2 is an even integer.

• Ø = ℝ.

• The new me is still the real me.

The negation of a proposition X is a proposition that is true 
whenever X is false and is false whenever X is true.

• For example, consider the statement “it is snowing outside.”

• Its negation is “it is not snowing outside.”

• Its negation is not “it is sunny outside.” ⚠

• Its negation is not “we’re in the Bay Area.” ⚠



How do you find the negation
of a statement?



“All My Friends Are Taller Than Me”
How to negate this?

Me
My Friends



The negation of the universal statement

Every P is a Q

is the existential statement

There is a P that is not a Q.



The negation of the universal statement

For all x, P(x) is true.

is the existential statement

There exists an x where P(x) is false.



“Some Friend Is Shorter Than Me”
How to negate this?

Me
My Friends



The negation of the existential statement

There exists a P that is a Q

is the universal statement

Every P is not a Q.



The negation of the existential statement

There exists an x where P(x) is true

is the universal statement

For all x, P(x) is false.



Puppy Logic

Consider the statement

If x is a puppy, then I love x.

The statement below is not its negation:

⚠ If x is a puppy, then I don’t love x ⚠

It might not be obvious, at a first glance, why these 
statements aren’t negations of one another. Talk this 
over with someone next to you and see if you can sort 
out why.



Puppy Logic

If x is a puppy, then I love x.

⚠ If x is a puppy, then I don’t love x ⚠

Things
I Love

Puppies

Puppies

Things
I Love

Things
I Love

“I love all puppies.” “I don't love any puppies.”“It's complicated.”

Puppies

So what is the proper 
negation?



Puppy Logic

If x is a puppy, then I love x.

There is a puppy I don’t love.

Things
I Love

Puppies

Puppies

Things
I Love

Things
I Love

“I love all puppies.” “There is a puppy that I don’t love.”

Puppies



The negation of the statement

“For any x, if P(x) is true,
then Q(x) is true”

is the statement

“There is at least one x where
P(x) is true and Q(x) is false.”

The negation of an implication
is not an implication!



How to Negate Universal Statements:

“For all x, P(x) is true”

becomes

“There is an x where P(x) is false.”

How to Negate Existential Statements:

“There exists an x where P(x) is true”

becomes

“For all x, P(x) is false.”

How to Negate Implications:

“For every x, if P(x) is true, then Q(x) is true”

becomes

“There is an x where P(x) is true and Q(x) is false”



Breakouts: Negation Practice



A Different Perspective on 
Implication



Set Complement

Q

P



Set Complement

PC



Implication, Diagrammatically

Q

P

P ⊆ Q

P = set of objects where P(x) is true
Q = set of objects where Q(x) is true



Implication, Diagrammatically

Q

P



Q

P

Implication, Diagrammatically

Not P



Implication, Diagrammatically

Q

P



Q

Implication, Diagrammatically

Q
Not Q

Q

P



Q

Implication, Diagrammatically

Q

Not PP

Not Q

Any time P is true, 
Q is true as well.

Any time Q is not 
true, P is not true 

as well.

Q ⊆ P



Proof by Contrapositive



The Contrapositive

The contrapositive of the implication “If P, 
then Q” is the implication “If Q is false, then P
is false.”

For example:

• “If it’s a pupply, then I love it.”

• Contrapositive: “If I don’t love it, then it’s 
not a puppy.”

Another example:

• “If I store cat food inside, then
angry raccoons won’t steal my cat food.”

• Contrapositive: “If angry raccoons stole my 
cat food, then I didn't store it inside.”



To prove the statement

“if P is true, then Q is true,”

you can choose to instead prove the 
equivalent statement

“if Q is false, then P is false,”

if that seems easier.

This is called a proof by contrapositive.



Q

Implication, Diagrammatically

Q
Not Q

Q

P Not P



Theorem: For any n ∈ ℤ, if n2 is even, then n is even.

Proof: By contrapositive; we prove that if n is odd,
then n2 is odd.

Let n be an arbitrary odd integer. Since n is odd,
there is some integer k such that n = 2k + 1.
Squaring both sides of this equality and
simplifying gives the following:

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1

n2 = 2(2k2 + 2k) + 1.

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1.
Therefore, n2 is odd. ■
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This is a courtesy to the reader and says 
“heads up! we’re not going to do a regular 

old-fashioned direct proof here.”
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Here, we're explicitly writing out the contrapositive. This 
tells the reader what we're going to prove. It also acts as a 
sanity check by forcing us to write out what we think the 

contrapositive is.
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We've said that we're going to prove this 
new implication, so let's go do it! The rest of 

this proof will look a lot like a standard 
direct proof.
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The general pattern here is the following:

1. Start by announcing that we're going to use a proof by 
contrapositive so that the reader knows what to expect.

2. Explicitly state the contrapositive of what we want to prove.

3. Go prove the contrapositive.
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Biconditionals

The previous theorem, combined with what we saw on 
Wednesday, tells us the following:

For any integer n, if n is even, then n2 is even.

For any integer n, if n2 is even, then n is even.

These are two different implications, each going the 
other way.

We use the phrase if and only if to indicate that two 
statements imply one another.

For example, we might combine the two above 
statements to say

●for any integer n: n is even if and only if n2 is 
even.



Proving Biconditionals

To prove a theorem of the form

P if and only if Q,

you need to prove two separate statements.

• First, that if P is true, then Q is true.

• Second, that if Q is true, then P is true.

You can use any proof techniques you'd like to 
show each of these statements.

In our case, we used a direct proof for one and 
a proof by contrapositive for the other.



Biconditionals, Diagrammatically

`

Q

P

P

Q

Q

P

If P, then Q If Q, then P

P if and only if Q



Time-Out for Announcements!



Handouts

There are five total handouts released 
today:

• Mathematical Vocabulary

• Guide to Indirect Proofs

• Ten Techniques to Get Unstuck

• Proofwriting Checklist

• Problem Set One

Be sure to read over these; there's a lot of 
really important information in there!



Announcements

Problem Set 1 goes out today!

• Checkpoint due Sunday, June 28th at 11:59PM.

• Grade determined by attempt rather than accuracy.  It's 
okay to make mistakes – we want you to give it your 
best effort, even if you're not completely sure what you 
have is correct.

• We will get feedback back to you with comments on 
your proof technique and style.

• The more effort you put in, the more you'll get out.

Remaining problems due Thursday, July 3 at 11:59PM.

Feel free to email us with questions, stop by office hours, 
or ask questions on Campuswire!



Submitting Assignments

• All assignments should be submitted through GradeScope.

• The programming portion of the assignment gets submitted 
separately from the written component.

• The written component must be typed up in LaTeX; handwritten 
solutions don’t scan well and get mangled in GradeScope. LaTeX 
is a useful tool to learn.

• Summary of the late policy:

• Everyone has three 48-hour late periods.

• Late periods can't be used on checkpoints.

• Nothing may be submitted more than 48 hours past the due date.

Because submission times are recorded automatically, we're strict 
about the submission deadlines.

• Very good idea: Leave at least two hours buffer time for your 
first assignment submission, just in case something goes wrong.

• Very bad idea: Wait until the last minute to submit.



Working in Pairs

●You can work on the problem sets individually 
or in pairs.

●Each person/pair should only submit a single 
problem set. In other words, if you’re working 
in a pair, you and your partner should agree 
who will make the submission.

●Full details about the problem sets, 
collaboration policy, and Honor Code can be 
found in Handout 04 and Handout 05.



A Note on the Honor Code



Office hours have started!

Schedule is available
on the course website.



Back to CS103!



Proof by Contradiction



Door 1 Door 2 Door 3

There’s something hidden behind one of these doors.
Which door is it hidden behind?



Door 2 Door 3

There’s something hidden behind one of these doors.
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Door 3

There’s something hidden behind one of these doors.
Which door is it hidden behind?

Even without opening this door, we know 
whatever is hidden has to be here.
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Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?
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Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?

P

Even without opening this door, we know P
has to be here.



A proof by contradiction shows that 
some statement P is true by showing that it 

cannot be false.



"When you have eliminated the 
impossible, whatever remains, 
however improbable, must be 

the truth."

- Sherlock Holmes



Proof by Contradiction

To prove a statement P is true using a proof 
by contradiction, do the following:

• Make the assumption that P is false.

• Beginning with this assumption, use 
logical reasoning to conclude something 
that is clearly impossible.

• For example, that 1 = 0, that x ∈ S and x
∉ S, etc.

• Conclude that P cannot be false, so P
must be true.



An Example: Set Cardinalities



Set Cardinalities

We’ve seen sets of many different cardinalities:

• |Ø| = 0

• |{1, 2, 3}| = 3

• |{ n ∈ ℕ | n < 137}| = 137

• |ℕ| = ℵ₀.

These span from the finite up through the infinite.

Question: Is there a “largest” set? That is, is there 
a set that’s bigger than every other set?



Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set ℘(S). By Cantor’s Theorem, we 
know that |S| < |℘(S)|, so ℘(S) is a larger set than S. 
This contradicts the fact that S is the largest set.

We’ve reached a contradiction, so our assumption 
must have been wrong. Therefore, there is no largest 
set. ■
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To prove this statement by contradiction, we’re going to assume 
its negation.

What is the negation of the statement
“there is no largest set?”

One option: “there is a largest set.”
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Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifically, we're assuming.

This helps the reader understand where we're going. Remember –
proofs are meant to be read by other people!
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The three key pieces:

1. Say that the proof is by contradiction.
2. Say what you are assuming is the negation of the statement to prove.
3. Say you have reached a contradiction and what the contradiction means.

In CS103, please include all these steps in your proofs!
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Proving Implications

To prove the implication

“If P is true, then Q is true.”

you can use these three techniques:

Direct Proof.

• Assume P is true, then prove Q is true.

Proof by Contrapositive.

• Assume Q is false, then prove that P is false.

Proof by Contradiction.

• … what does this look like?



Theorem: For any integer n, if n2 is even, then n is even.

Proof: Assume for the sake of contradiction that there is an integer n
where n2 is even, but n is odd.

Since n is odd we know that there is an integer k such that

n = 2k + 1. (1)

Squaring both sides of equation (1) and simplifying
gives the following:

n2 = (2k + 1)2

= 4k2 + 4k + 1
= 2(2k2 + 2k) + 1. (2)

Equation (2) tells us that n2 is odd, which is impossible;
by assumption, n2 is even.

We have reached a contradiction, so our assumption must have 
been incorrect. Thus if n is an integer and n2 is even, n is even
as well. ■



Since n is odd we know that there is an integer k
such

that

n = 2k + 1
(1)

Squaring both sides of equation (1) and simplifying
gives the following:

n2 = (2k + 1)2

= 4k2 + 4k
+ 1

= 2(2k2 + 
2k) + 1 (2)

Equation (2) tells us that n2 is odd, which is 
impossible;

by assumption, n2 is even.

What is the negation of our theorem?
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In CS103, please include all these steps in your proofs!
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Recap: Negating Implications

To prove the statement

“For any x, if P(x) is true, then Q(x) is true”

by contradiction, we do the following:

• Assume this entire purple statement is false.

• Derive a contradiction.

• Conclude that the statement is true.

What is the negation of the above purple statement?

“There is an x where
P(x) is true and Q(x) is false”



If you want to prove this by 
contradiction...

…assume this.

All P's are Q's. Some P is not a Q.

No P's are Q's. Some P is a Q.

Some P's are Q's. All P's are not Q's.

Some P is not a Q. All P's are Q's.

If P is true, then Q is true. P is true, but Q is not true.

P is true and Q is true. P is false, or Q is false, or both are 
false.

P is true or Q is true, or both are 
true.

P is false and Q is false.



Breakout Practice: 
Proofs by Contradiction and 

Contrapositive.



What We Learned

What's an implication?

• It's statement of the form “if P, then Q,” and states that if P is 
true, then Q is true.

How do you negate formulas?

• It depends on the formula. There are nice rules for how to negate 
universal and existential statements and implications.

What is a proof by contrapositive?

• It's a proof of an implication that instead proves its contrapositive.

• (The contrapositive of “if P, then Q” is “if not Q, then not P.”)

What's a proof by contradiction?

• It's a proof of a statement P that works by showing that P cannot 
be false.



Next Time

Mathematical Logic

• How do we formalize the reasoning from 
our proofs?

Propositional Logic

• Reasoning about simple statements.

Propositional Equivalences

• Simplifying complex statements.


